wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x and y are connected parametrically by the given equation, then without eliminating the parameter, find dydx.
x=sin3tcos2t,y=cos3tcos2t

Open in App
Solution

The given equations are x=sin3tcos2t,y=cos3tcos2t
Then, dxdt=ddt[sin3tcos2t]

=cos2t.ddt(sin3t)sin3t.ddtcos2tcos2t

=cos2t.3sin2tddt(sint)sin3t×12cos2tddt(cos2t)cos2t

=3cos2t.sin2tcostsin3t2cos2t.(2sin2t)cos2t

=3cos2tsin2tcost+sin3tsin2tcos2tcos2t

dydt=ddt[cos3tcos2t]

=cos2t.ddt(cos3t)cos3t.ddtcos2tcos2t

=cos2t.3cos2t.ddt(cost)cos3t.12cos2t.ddt(cos2t)cos2t

=3cos2t.cos2t(sint)cos3t.12cos2t.(2sin2t)cos2t

=3cos2tcos2tsint+cos3tsin2tcos2tcos2t

dydx=(dydt)(dxdt)=3cos2t.cos2t.sint+cos3tsin2t3cos2t.sin2t.cost+sin3tsin2t

=3cos2t.cos2t.sint+cos3t(2sintcost)3cos2t.sin2t.cost+sin3t(2sintcost)

=sintcost[3cos2t.cost+2cos3t]sintcost[3cos2t.sint+2sin3t]

=[3(2cos2t1)cost+2cos3t][3(12sin2t)sint+2sin3t]

=4cos3t+3cost3sint4sin3t
=cos3tsin3t=cot3t

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon