The given equations are x=sin3t√cos2t,y=cos3t√cos2t
Then, dxdt=ddt[sin3t√cos2t]
=√cos2t.ddt(sin3t)−sin3t.ddt√cos2tcos2t
=√cos2t.3sin2tddt(sint)−sin3t×12√cos2tddt(cos2t)cos2t
=3√cos2t.sin2tcost−sin3t2√cos2t.(−2sin2t)cos2t
=3cos2tsin2tcost+sin3tsin2tcos2t√cos2t
dydt=ddt[cos3t√cos2t]
=√cos2t.ddt(cos3t)−cos3t.ddt√cos2tcos2t
=√cos2t.3cos2t.ddt(cost)−cos3t.12√cos2t.ddt(cos2t)cos2t
=3√cos2t.cos2t(−sint)−cos3t.12√cos2t.(−2sin2t)cos2t
=−3cos2tcos2tsint+cos3tsin2tcos2t√cos2t
∴dydx=(dydt)(dxdt)=−3cos2t.cos2t.sint+cos3tsin2t3cos2t.sin2t.cost+sin3tsin2t
=−3cos2t.cos2t.sint+cos3t(2sintcost)3cos2t.sin2t.cost+sin3t(2sintcost)
=sintcost[−3cos2t.cost+2cos3t]sintcost[3cos2t.sint+2sin3t]
=[−3(2cos2t−1)cost+2cos3t][3(1−2sin2t)sint+2sin3t]
=−4cos3t+3cost3sint−4sin3t
=−cos3tsin3t=−cot3t