The correct option is B R1 only
Ans : (a)
Let V = X + 2 Then,
fv(v)=fX(v−2)
H(X+2)=H(V)=−∫∞−∞fv(v) ln [fv(v)]dv
=−∫∞−∞fX(v−2) ln [fX(v−2)]dv
Let, u=v−2⇒dv=du.
So, H(X+2)=−∫∞−∞fX(u) ln [fX(u)]du=H(X)
H(X+2)=H(X)⇒ Relation R1 is correct
Let, Z=X+Y. Then, Y=Z−X and FXZ(x,z)=fXY(x,z−x)
H(X+Y|X)=H(Z|X)=−∫∞−∞∫∞−∞fXZ(x,z) In [fXZ(x,z)fX(x)]dx dz
=∫∞−∞∫∞−∞fXY(x,z−x) ln [fXY(x,z−x)fX(x)]dx dz
=∫∞−∞∫∞−∞fXY(x,y) ln [fXY(x,y)f(x)]dx dy
H(X+Y|X)=H(Y|X)⇒ Relation R2 is incorrect