tan−1(1x)+tan−1(1y)=tan−1(17)
⇒tan−1⎛⎜
⎜
⎜⎝1x+1y1−1xy⎞⎟
⎟
⎟⎠=tan−1(17)
⇒x+yxy−1=17
⇒7x+7y=xy−1
⇒x(y−7)=7y+1
⇒ x=7y+1y−7=7(y−7+7)+1y−7
⇒x=7+50y−7
Since x is a positive integer, y can take the values 8,9,12,17,32,57.
Hence, number of ordered pairs of (x,y) is 6.