If x and y are positive real numbers and m,n are any positive integers, then
xn.ym(1+x2n)(1+y2m) >14
False
Given xn.ym(1+x2n)(1+y2m) > 14
⇒ (1+x2n)(1+y2m) < 4 xnym ----------------(1)
Consider 1 , x2n
As AM ≥ GM
1+x2n2≥2√x2n
⇒ 1 + x2n ≥ 2xn ---------------------------(2)
Similarly for 1, y2n
As AM ≥ GM
1+y2n2≥2√y2n
⇒ 1 + y2n ≥ 2yn ---------------------------(3)
Multiplying (2) and (3)
(1+x2n)(1+y2m)≥4xnym Which is in contradiction with the given statement.
So, given statement is false.