If x and y are real, and x2+y2−2xy+4x+4y+12=0, then y can take the values :
x2+y2−2xy+4x+4y+12=0
Forming a quadratic in x assuming y constant
x2+(4−2y)x+y2+4y+12=0
Applying quadratic formula
x=−(4−2y)±√(4−2y)2−4(1)(y2+4y+12)2(1)x=(2y−4)±√16+4y2−16y−4y2−16y−482x=(2y−4)±√−32y−322
Now y and x are both real , therefore the term under square root must be positive or zero
⇒−32y−32≥0⇒32y+32≤0⇒y≤−1
So, option A is correct.