If x and y are the maximum and minimum values of sin θ + cos θ, find the value of x2 + y2
If you know that the maximum and minimum value of asinθ + bcosθ are √a2+b2, and -√a2+b2,you can directly use this result to arrive at the answer.
We will try to arrive at the answer similar to the derivation of the above result.
Let E = asinθ + bcosθ, If we can express it as k sin (A + B), we can say the minimum and maximum values are -k and +k, where k is a +ve number.
we will expand ksin (A+B) and campare it with asinθ + bsinθ.
ksin(A+B) = asinθ + bcosθ
k[sinAcosB + cosAsinB) = asinθ + bcosθ
If we take A = θ, then we get k cos B = a and Ksin B = b ___________(1)
⇒ cosB = ak and sinB = bk
cos2B + sin2B = a2+b2k2 = 1
⇒ k = √a2+b2
From (1) we get = cosB = a√a2+b2
sinB = b√a2+b2
So we will divide and multiply by √a2+b2 in asinθ + bcosθ.
⇒ √a2+b2 (a√a2+b2sinθ+b√a2+b2cosθ)
⇒ asinθ + bcosθ = √a2+b2 (sinθx cosB + cosθsinB)
= √a2+b2 sin(θ + B)
→ Maximum and minimum values are
√a2+b2 and - √a2+b2
In our question a = 1 , b =1
⇒ The minimum and maximum values are −√2 and √2
⇒ x2 + y2 = 2 + 2 = 4