The correct option is
C 2Here, according to the question
if A=1, then A3=1,
We see that unit digit number of A and A3 are same.
for, A=2⇒A3=8,, unit digits are not same
A=3⇒A3=27, unit digits are not same
A=4⇒A3=64, unit digits are same
A=5⇒A3=125, unit digits are same
A=6⇒A3=216, unit digits are not same
A=7⇒A3=343, unit digits are not same
A=8⇒A3=512, unit digits are not same
A=8⇒A3=512, unit digits are same
So, there are five possible solutions where unit digits of A and A3 are same.
∴x=5
Again, if we take A=1,A2=1,A3=1, unit digits are same
A=2⇒A2=4,A3=8, unit digits are not same
A=3⇒A2=9,A3=27, unit digits are not same
A=4⇒A2=16,A3=64, unit digits are not same
A=5⇒A2=25,A3=125, unit digits are same
A=6⇒A2=36,A3=216, unit digits are same
A=7⇒A2=49,A3=343, unit digits are not same
A=8⇒A2=64,A3=512, unit digits are not same
A=9⇒A2=81,A3=729 unit digits are not same
Here, we can see that there are three possible solutions where unit digits of A2,A3 are same.
So, y=3
Hence, x−y=5−3=2.