Given equation 12sinx+5cosx=2y2−8y+21
Consider LHS =12sinx+5cosx
Put 12=rcosα,5=rsinα
Squaring and adding , we get
⇒r=13,tanα=512
So LHS =13sin(x+α)
Since, sin(x+α)≤1
⇒13sin(x+α)≤13
So, LHS≤13
Now, consider RHS=2y2−8y+21
=2(y−2)2+13
Since 2(y−2)2≥0
⇒2(y−2)2+13≥13
So, RHS≥13
Hence, roots of the equation exist if L.H.S. = R.H.S. = 13
⇒y=2 and sin(x+tan−1(512))=1
⇒x=π2−tan−1512
⇒x=cot−1512
∴3864cot(xy2)=3864×512
=322×5=1610