We have,
x2+y2=6x−8y
⇒(x2−6x+9)+(y2+8y+16)=25
⇒(x−3)2+(y+4)2=52
Clearly this is a equation of circle centered at (3,−4) with radius 5
So any point on this circle can be taken as,
x−3=5cosθ,y+4=5sinθ
⇒x=3+5cosθ,y=−4+5sinθ
Ans since −1≤sinθ,cosθ≤1
Hence ymax=3+5(1)=8,ymin=3+5(−1)=−2
and xmax=−4+5(1)=1,xmin=−4+5(−1)=−9
Therefore k+n+p+h=−2