wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If x=asin2t(1+cos2t) and y=bcos2t(1cos2t), then find the values of dydx at t=π4 and t=π3.

Open in App
Solution

x=asin2t(1+cos2t)
dxdt=a[sin2tddt(1+cos2t)+(1+cos2t)ddt(sin2t)]
dxdt=a[2sin22t+(1+cos2t)(2cos2t)]
dxdt=a[2sin22t+2cos2t+2cos22t]
dxdt=a[2cos2t+2(cos22tsin22t)]
dxdt=a[2cos2t+2cos4t]
dxdt=2a(cos2t+cos4t)
y=bcos2t(1cos2t)
dydt=b[cos2tddt(1cos2t)+(1cos2t)ddt(cos2t)]
dydt=b[2sin2tcos2t2sin2t(1cos2t)]
dydt=b[2sin2tcos2t2sin2t+2sin2tcos2t]
dydt=b[4sin2tcos2t2sin2t]
dydt=2b[2sin2tcos2tsin2t]
dydt=2b(sin4tsin2t)
dydx=dydtdxdt=2b(sin4tsin2t)2a(cos2t+cos4t)
dydx=b(sin4tsin2t)a(cos2t+cos4t)
dydxt=π4=b(sin4π4sin2π4)a(cos2π4+cos4π4)
=b(sinπsinπ2)a(cosπ2+cosπ)
=b(01)a(01)=ba
dydxt=π3=b(sin4π3sin2π3)a(cos2π3+cos4π3)
=b(sin(π+π3)sin(ππ3))a(cos(ππ3)+cos(π+π3))
=b(sinπ3sinπ3)a(cosπ3cosπ3)
=2bsinπ32acosπ3
=btanπ3a=3ba

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon