wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=b+ca,y=c+ab,z=a+bc, shew that x3+y3+z33xyz=4(a3+b3+c33abc).

Open in App
Solution

Given that:
x=b+ca,y=c+ab,z=a+bc
To Show:
x3+y3+z33xyz=4(a3+b3+c33abc)
Proof:
x3+y3+z33xyz=12(x+y+z){(xy)2+(yz)2+(zx)2}
Here,
x+y+z=b+ca+c+ab+a+bc=a+b+c,
xy=b+caca+b=2(ba),
Similarly,
yz=2(cb) and zx=2(ac)
Now,
L.H.S=x3+y3+z33xyz=12(x+y+z){(xy)2+(yz)2+(zx)2}
=12(a+b+c){4(ba)2+4(cb)2+4(ac)2}
=4×12(a+b+c){(ab)2+(bc)2+(ca)2}
=4(a3+b3+c33abc)
=R.H.S
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Common Factors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon