If x=b+c,y=c+a,z=a+b, then find the value of x2+y2+z2−yz−zx−xya2+b2+c2−bc−ca−ab
Open in App
Solution
Given, x−y=(b+c)−(c+a)=b−a Similarly y−z=c−b and z−x=a−c Now x2+y2+z2−yz−zx−xy =12[(x−y)2+(y−z)2+(z−x)2] =12[(b−a)2+(c−b)2+(a−c)2] =12[(a−b)2+(b−c)2+(c−a)2] a2+b2+c2−bc−ca−ab ∴ the value of the given expression of equal to 1.