wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xcosα+ysinα=p where, p=sin2αcosα be a straight line, prove that perpendiculars p1,p2 and p3 on this line from the points (m2,2m),(mm,m+m) and (m2,2m) respectively are in geometrical progression.

Open in App
Solution

p1=m2cosα+2msinα(sin2α/cosα)(cos2α+sin2α)
p1=(mcosα+sinα(cosα))2
Similarly p3=(mcosα+sinα(cosα))2
Also
p2=mmcosα+(m+m)sinα(sin2α/cosα)(cos2α+sin2α)
or p2=1cosα[mmcos2α+(m+m)sinαcosα+sin2α]
or p2=(mcosα+sinα)(cosα).mcosα+sinα(cosα)
or p2=p1.p3 or p22=p1p3
Hence p1,p2,p3 are in G.P.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon