If xcosα+ysinα=p where, p=sin2αcosα be a straight line, prove that perpendiculars p1,p2 and p3 on this line from the points (m2,2m),(mm,m+m) and (m2,2m) respectively are in geometrical progression.
Open in App
Solution
p1=m2cosα+2msinα(−sin2α/cosα)√(cos2α+sin2α) p1=(mcosα+sinα√(cosα))2 Similarly p3=(m′cosα+sinα√(cosα))2 Also p2=mm′cosα+(m+m′)sinα−(−sin2α/cosα)√(cos2α+sin2α) or p2=1cosα[mm′cos2α+(m+m′)sinαcosα+sin2α] or p2=(mcosα+sinα)√(cosα).m′cosα+sinα√(cosα) or p2=√p1.p3 or p22=p1p3 Hence p1,p2,p3 are in G.P.