wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xcosα+ysinα=xcosβ+ysinβ=2a(0<α,β<π/2), then

A
cosα+cosβ=4axx2+y2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cosαcosβ=4a2y2x2+y2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sinα+sinβ=4ayx2+y2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sinα+sinβ=4a2x2x2+y2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A cosαcosβ=4a2y2x2+y2
B sinα+sinβ=4ayx2+y2
D cosα+cosβ=4axx2+y2
The general equation becomes
xcosθ+ysinθ=2a.
Or
(ysinθ2a)2=(xcosθ)2
Or
y2sin2θ4aysinθ+4a2=x2cos2θ
Or
y2sin2θ4aysinθ+4a2=x2(1sin2θ)
Or
(x2+y2)sin2θ4aysinθ+4a2+x2=0.
Let the roots be sinα and sinβ.
Hence
sinα+sinβ=4ayx2+y2
And
sinα.sinβ=4a2+x2x2+y2
Similarly
(xcosθ2a)2=(ysintheta)2
Or
(x2+y2)cos2θ4axcosθ+4a2+y2=0
Let the roots be cosα and cosβ.
Hence
cosα+cosβ=4axx2+y2
And
cosα.cosβ=4a2+y2x2+y2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon