If xcosα+ysinα=xcosβ+ysinβ=a,2nπ<α,β<(4n+1)π2, then
Evidently αandβ are the roots of the equation xcosθ+ysinθ=a.....(1)
orx2cos2θ=(a−ysinθ)2orx2−x2sin2θ=a2+y2sin2θ−2aysinθ
or sin2θ(x2+y2)−2aysinθ+a2−x2=0
The roots of the equation are sinα and sinβ
∴sinα+sinβ=2ayx2+y2 and sinαsinβ.=a2−x2x2+y2
Writing (1) in terms of cosθ,(x2+y2)cos2θ−2axcosθ+a2−y2=0
∴cosα+cosβ=2axx2+y2andcosαcosβ=a2−y2x2+y2