x=cos t (3−2cos2t)
dxdt=cos t[−4cos t(−sin t)]+(3−2 cos2t)(−sin t)
=4 sin t cos2t−3 sin t+2 sin t cos2 t
=6 sin t cos2 t−3 sin t
y=sin t(3−2sin2t)
dydx=cos t(3−2sin2t)+sin t(−4 sin t cos t)
=3 cos t−2 sin2 t cos t−4 sin2 t cos t
=3 cos t−6 sin2 t cos t
dydx=dydtdxdt=3 cos t(1−2 sin2 t)3 sin t(2 cos2 t−1)=cos t.cos 2tsin t cos 2t=cot t
At t=π4, dydx=cot π/4=1