wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=cos t (32 cos2 t) and y=sin t (32 sin2 t), find the value of dydx at t=π4.

Open in App
Solution

x=cos t (32cos2t)
dxdt=cos t[4cos t(sin t)]+(32 cos2t)(sin t)
=4 sin t cos2t3 sin t+2 sin t cos2 t
=6 sin t cos2 t3 sin t

y=sin t(32sin2t)
dydx=cos t(32sin2t)+sin t(4 sin t cos t)
=3 cos t2 sin2 t cos t4 sin2 t cos t
=3 cos t6 sin2 t cos t

dydx=dydtdxdt=3 cos t(12 sin2 t)3 sin t(2 cos2 t1)=cos t.cos 2tsin t cos 2t=cot t
At t=π4, dydx=cot π/4=1

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon