If x=cosθ,y=sin5θ, then (1-x2)d2y/dx2-xdy/dx is equal to:
-5y
5y
25y
-25y
Explanation for the correct option.
Step 1: Differentiate xandy w.r.t θ
x=cosθ⇒dxdθ=-sinθ
y=sin5θ⇒dydθ=5cos5θ
Step 2: Find First and second derivative.
dydx=dydθdxdθ=-5cos5θsinθ
d2ydx2=ddθdydxdθdx=-5ddθcos5θsinθ×-1sinθ=5sinθ×-5sin5θ×sinθ-cos5θ×cosθsin2θ
Step 3: Find the value of (1-x2)d2y/dx2-xdy/dx
By substituting the values in the given equation we get,
(1-x2)d2y/dx2-xdy/dx=1-cos2θ5sinθ×-5sin5θ×sinθ-cos5θ×cosθsin2θ-cosθ-5cos5θsinθ=sin2θ×5-5sin5θ×sinθ-cos5θ×cosθsin3θ-cosθ-5cos5θsinθ=-25sin5θ×sinθsinθ-5cos5θ×cosθsinθ-cosθ-5cos5θsinθ=-25sin5θ-5cos5θcotθ+5cos5θcotθ=-25sin5θ=-25y
Hence, option D is correct.