If x cos θ−y sin θ=a and x sinθ+y cosθ=b, then x2+y2a2+b2 =
1
x cos θ−y sinθ=a squaring both sides we get,
∴(x cos θ−y sin θ)2=a2
x sin θ+y cos θ=b
(x sin θ+y cos θ)2=b2
∴x2cos2θ−2×y cosθ sinθ+y2sin2θ=a2
Adding, x2sin2θ+2xy sinθcosθ+y2cos2θ=b2x2(cos2θ+sin2θ)+y2(sin2θ+cos2θ)=a2+b2
∴x2+y2=a2+b2 ....(sin2θ+cos2θ=1)
∴x2+y2a2+b2=1