wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=cost+log tant2, y=sint, then find the value of d2ydt2 and d2ydx2 at t=π4.

Open in App
Solution

We have,x=cost+log tant2 and y=sintOn differentiating with respect to t, we getdxdt=ddtcost+log tant2=-sint+1tant2×sec2t2×12 =-sint+12sint2cost2=-sint+1sint =-sin2t+1sint=-sin2t+1sint =cos2tsintanddydt=ddtsint=costNow, d2ydt2=ddtdydt=ddtcost=-sintd2ydt2t=π4=-sinπ4=-12 ...(1)Also, dydx=dydtdxdt=costcos2tsint=sintcost=tantNow, d2ydx2=ddxdydx=ddxtant =ddttant×dtdx=sec2t×sintcos2t =sintcos4td2ydx2t=π4=sinπ4cos4π4=22 ...(2)Hence, at t=π4, d2ydt2=-12 and d2ydx2=22.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon