The correct option is D none of these
We have,
limx→0−{x}tan{x}
=limx→0−x−[x]tan(x−[x])=limx→0−x+1tan(x+1)=1tan1=cot1 and,
limx→0+{x}tan{x}=limx→0+x−[x]tan(x−[x])=limx→0+xtanx=1
Clearly, limx→0−{x}tan{x}≠limx→0+{x}tan{x}
So, limx→0{x}tan{x} does not exist.