The correct option is A an integer divisible by 2
Let (6√6+14)2n+1=I+F
where I is a natural number and 0<F<1
Let G=(6√6−14)2n+1
⇒0<G<1
Now,
I+F−G=(6√6+14)2n+1−(6√6−14)2n+1=2(2n+1C1(6√6)2n⋅14+2n+1C3(6√6)2n−2⋅143+⋯)
As −1<F−G<1, so
F−G=0
Therefore,
I is an even integer.