If [x] denotes the greatest integer function, the value of ∫01.5x[x2]dx is:
54
0
32
34
Explanation for the correct option.
∫01.5x[x2]dx=∫01x[x2]dx+∫12x[x2]dx+∫21.5x[x2]dx=∫01x×0dx+∫132x[x2]dx=∫132x[x2]dx
Let x2=t then 2xdx=dt. So,
∫132xx2dx=12∫194tdt=12∫12tdt+12∫294tdt=12∫121dt+12∫2942dt=12t12+122t294=122-1+12294-22=12+129-82=34
Hence, option D is correct.