The correct option is D have infinitely many solutions if θ∈(π2,2π3) and has a unique solution if θ∈(π,7π6)
[sinθ]x+[–cosθ]y=0 ...(1)
[cotθ]x+y=0 ...(2)
Case I
θ∈(π2,2π3)sinθ∈(√32,1)⇒[sinθ]=0cosθ∈(−12,0)⇒[−cosθ]=0cotθ∈(−1√3,0)⇒[cotθ]=−1
Equation (1) and (2) will be
0x+0y=0−x+y=0
So, the system will have infinitely many solution
Case II
θ∈(π,7π6)sinθ∈(−12,0)⇒[sinθ]=−1cosθ∈(−1,−√32)⇒[−cosθ]=0cotθ∈(√3,∞)⇒[cotθ]={1,2,3,..}
Equation (1) and (2) will be
[sinθ]x+[−cosθ]y=0⇒x=0[cotθ]x+y=0⇒[I]x+y=0 I={1,2,3,..}⇒x+y=0, 2x+y=0,⋯∞
Each line will intersect x=0 at only one point i.e. y=0
So, the system will have unique solution.