If [x] denotes the greatest integer less than or equal to x, then the value of ∫02|x-2|+[x]dx is:
2
3
1
4
32
Explanation for correct option.
∫02|x-2|+[x]dx=∫02x-2dx+∫02xdx=∫022-xdx+∫01xdx+∫12xdxifx<2,thenx-2=-x-2=2x-x2202+∫010dx+∫12dxthevalueofxbetween0to1is0,andbetween1to2is1=2(2-0)-22-022+0+x12=2+1=3
Hence, option B is correct.