If [x] denotes the greatest integers ≤x, then find [23]+[(23)+(199)]+[(23)+(299)]+……+[(23)+(9899)]
66
98
14
65
[23]=0 [23+3399]=[23+13]=[33]=1 ∴[23+3499]=1 [23+3599]=1 ⋅ ⋅ ⋅ [23+9899]=1 ∴ Adding them, we get 66.
If [x] denotes the greatest integer ≤ x, then evaluate limn→∞1n3{[12x]+[22x]+[32x+.....+[n2x]}