wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If [x] denotes the integral part of x for real x, then the value of
[14]+[14+1200]+[14+1100]+[14+3200]+.......+[14+199200] is 10a. Find a.

Open in App
Solution

[14]+[14+1200]+[14+1100]+[14+3200]+.......+[14+199200]
We know that
0x<1 , [x]=0
and 1x<2, [x]=1
Now, [14+34]=[14+150200]=[1]=1
Similarly, [14+151200]=[1.005]=1
So, we can write the nth term of the series in the form [14+n200]
Here, when n<150, [14+n200]=0
When 150n199 , [14+n200]=1.

So, [14]+[14+1200]+[14+1100]+[14+3200]+.......+[14+150200]......+[14+199200]
=0+0+....+1+1+1+....upto50times
=50
But given sum is 10a
10a=50
a=5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon