x=1+i√32,x2=14(1−3+2i√3)=i√3−12
x4=14(−3+1−2i√3)=(−1−i√3)2
y=x4−x2+6x−4
=12(−1−i√3)−12(i√3−1)+6×12(1+i√3)−4
=−12−i√32−i√32+12+3+3i√3−4
=2i√3−1
If (x+1x)=4, find the value of (i) If (x2+1x2) and (ii) (x4+1x4)