If x+1x=1 and p=x4000+1x4000 and q be the digit at unit place in the number 22n+1,n∈N and n>1, then the value of p+q=
Open in App
Solution
x+1x=1 ⇒x2−x+1=0 ∴x=−ω,−ω2 Now for x=−ω,p=ω4000+1ω4000=ω+1ω=−1 Similarly for x=−ω2 also p=−1 For n>1,2n=4k ∴22n=24k 16k= a number with last digit =6 ⇒q=6+1=7 Hence p+q=6