wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+1x=2cosπ10, then find x5+1x5

Open in App
Solution

Given
x+1x=2cosπ10

x2+1=2xcoxπ10

x22xcosπ10+1=0

x=2cosπ10±4cos2π1042=2cosπ10±2sin2π102=cosπ10+isinπ10=eiπ10

x5+1x5=(eiπ10)5+1(eiπ10)5

=eiπ2+eiπ2

=(cosπ2+isinπ2)+(cos(π2)+isin(π2))

=0+i+0i

=0

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(a ± b ± c)²
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon