108+76√2
Given , x−1x=3+2√2 …(i),
Taking cube on both side,
(x−1x)3=(3+2√2)3,
Using identity,
(a−b)3=a3−b3−3ab(a−b)(a+b)3=a3+b3+3ab(a+b)∴(x−1x)3=x3−(1x)3−3×x×1x(x−1x)
=33+(2√2)3+3×3×2√2(3+2√2)
(from equation 1)
x3−1x3−3(3+2√2)=27+16√2+18√2+(3+2√2)
x3−1x3−9−6√2=27+16√2+54√2+72
x3−1x3−9−6√2=99+70√2
x3−1x3=99+9+70√2+6√2
x3−1x3=108+76√2