The correct option is A 2207
Let's use identity
(a+b)2=a2+2ab+b2.
x+1x=3
On squaring both sides, we get:
(x+1x)2=32
x2+2×x×1x+(1x)2=9
x2+2+1x2=9
x2+1x2=9−2
x2+1x2=7
On squaring both sides, we get:
(x2+1x2)2=72
x4+2×x2×1x2+(1x2)2=49
x4+2+1x4=49
x4+1x4=49−2
x4+1x4=47
On squaring both sides, we get:
(x4+1x4)2=472
x8+2×x4×1x4+(1x4)2=2209
x8+2+1x8=2209
x8+1x8=2209−2
x8+1x8=2207