If x+1x=a,x2+1x3=b, then x3+1x2 is
x+1x=a,x2+1x3=b(x+1x)2=a2x2+1x2+2=a2.....(i)(x+1x)3=a3x3+1x3+3(x+1x)=a3....(ii)
Adding equation (i) and (i)
x3+1x3+3(x+1x)+x2+1x2+2=a2+a3x2+1x3+x3+1x2+3(x+1x)+2=a2+a3b+x3+1x2+3a+2=a2+a3x3+1x2=a2+a3−3a−b−2
So option A is correct