The correct options are
A one positive integral value
B one irrational value
D two positive rational values
x34(log3x)2+log3x−54=√3
Taking log on both sides on base 3, we have
(34(log3x)2+log3x−54)×log3x=log3√3[∵logxm=mlogx]
⇒(34(log3x)2+log3x−54)log3x=12
Let log3x be y.
⇒(34y2+y−54)y=12
⇒4y3−5y2−2y+3=0
⇒(y−1)(3y2+7y+2)=0
⇒y=1,−13,−2
⇒x=3,3−1/3,19
Hence, options A,B,C are correct.