Let λ=tanθ
So, x=4tanθ1+tan2θ=2sin2θ
Similarly y=2(1−tan2θ1+tan2θ)=2cos2θ
Now, we can write
x2−xy+y2
=4sin22θ−4sin2θcos2θ+4cos22θ
=4−2(2cos2θsin2θ)
=4−2sin4θ
We know
−1≤sin4θ≤1⇒2≤4−2sin4θ≤6
Thus, comparing with [a,b], we get
a=2 and b=6
⇒a+b=8
Now, we have the other equation as:
3cosϕ=p2−(a+b)p+19
⇒3cosϕ=p2−8p+19
⇒3cosϕ=(p−4)2+3
We know that
3cosϕ≤3
So, (p−4)2=0
⇒p=4