x=sin3t√cos2t;y=cos3t√cos2t
x=sin3t(cos2t)−1/2;y=cos3t(cos2t)−1/2
dxdt=3sin2t(cos2t)−1/2+sin3t(−12)(cos2t)−3/2×(−sin2t)2=3sin2tcost√cos2t+sin3tsin2t(cos2t)3/2
dydt=3cos2t(−sint)(cos2t)−1/2+cos3t(−12)(cos2t)−3/2×(−sin2t)2=3cos2tsint√cos2t+cos3tsin2t(cos2t)3/2
dydx=dy/dtdx/dt=3cos3tsint√cos2t+cos3tsin2t(cos2t)3/23sin2tcost√cos2t+sin3tsin2t(cos2t)3/2
=cos2t√cos2t[−3sint+costsin2tcos2t]sin2t√cos2t[3cost+sintsin2tcos2t]=1tan2t[−3tant+tan2t]cost[3cost+tan2t]sint
=1tan2t[−3tant+tan2t][3cott+tan2t]×1tant=1tan3t[−3tant+tan2t][3cott+tan2t]
=1tan3t[−3tant+2tant1−tan2t][3tant+2tant1−tan2t]=tanttan3t[−3+21−tan2t][3(1−tan2t)+2tan2ttant(1−tan2t)]
=tan2t(1−tan2t)tan3t(1−tan2t)[−1+3tan2t3−tan2t]=1tant[3tan2t−13−tan2t]=−1tan3t