wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=sin3tcos2t,y=cos3tcos2t then find dydx

Open in App
Solution

x=sin3tcos2t;y=cos3tcos2t
x=sin3t(cos2t)1/2;y=cos3t(cos2t)1/2
dxdt=3sin2t(cos2t)1/2+sin3t(12)(cos2t)3/2×(sin2t)2=3sin2tcostcos2t+sin3tsin2t(cos2t)3/2
dydt=3cos2t(sint)(cos2t)1/2+cos3t(12)(cos2t)3/2×(sin2t)2=3cos2tsintcos2t+cos3tsin2t(cos2t)3/2
dydx=dy/dtdx/dt=3cos3tsintcos2t+cos3tsin2t(cos2t)3/23sin2tcostcos2t+sin3tsin2t(cos2t)3/2
=cos2tcos2t[3sint+costsin2tcos2t]sin2tcos2t[3cost+sintsin2tcos2t]=1tan2t[3tant+tan2t]cost[3cost+tan2t]sint
=1tan2t[3tant+tan2t][3cott+tan2t]×1tant=1tan3t[3tant+tan2t][3cott+tan2t]
=1tan3t[3tant+2tant1tan2t][3tant+2tant1tan2t]=tanttan3t[3+21tan2t][3(1tan2t)+2tan2ttant(1tan2t)]
=tan2t(1tan2t)tan3t(1tan2t)[1+3tan2t3tan2t]=1tant[3tan2t13tan2t]=1tan3t

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon