wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=32 then find the value of :-
1+x1+1+x+1x11x

Open in App
Solution

We have,

x=321+x1+1+x+1x11xx=sin2θθ=300

1+sin2θ1+1+sin2θ+1sin2θ11sin2θ

1+sin2θ(1+sinθ+cosθ)+1sin2θ1(cosθsinθ)

(sinθ+1cotθ)(1+sin2θ)+(1sin2θ)(1+sinθ+cosθ)(sinθ+1)2cos2θ

=2sinθ+22cosθsinθ(sinθ+1)2cos2θ

An putting θ=300

=2×12+2232329434

=33/26/4=3/23/2=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon