We have,
x=√321+x1+√1+x+1−x1−√1−xx=sin2θθ=300
1+sin2θ1+√1+sin2θ+1−sin2θ1−√1−sin2θ
1+sin2θ(1+sinθ+cosθ)+1−sin2θ1−(cosθ−sinθ)
(sinθ+1−cotθ)(1+sin2θ)+(1−sin2θ)(1+sinθ+cosθ)(sinθ+1)2−cos2θ
=2sinθ+2−2cosθsinθ(sinθ+1)2−cos2θ
An putting θ=300
=2×12+2−2√32√3294−34
=3−3/26/4=3/23/2=1