We have,
x=√5+1√5−1,y=√5−1√5+1
Since,
=x2+xy+y2
=(√5+1√5−1)2+(√5+1√5−1)(√5−1√5+1)+(√5−1√5+1)2
=(5+1+2√55+1−2√5)+1+(5+1−2√55+1+2√5)
=(6+2√56−2√5)+(6−2√56+2√5)+1
=3+√53−√5+3−√53+√5+1
=(3+√5)2+(3−√5)2(3−√5)(3+√5)+1
=9+5+6√5+9+5−6√59−5+1
=284+1
=7+1
=8
Hence, this is the answer.