Given: x=√5+√3√5−√3 and y=√5−√3√5+√3
Consider x=√5+√3√5−√3
Rationallsing the denominator.
x=(√5+√3)2(√5−√3)(√5+√3)
x=(√5)2+2√15+(√3)2(√5)2−(√3)2
x=5+2√15+35−3
x=8+2√152
x=4+√15
[1.5]
Consider, y=√5−√3√5+√3
Rationalising the denominator,
y=(√5−√3)2(√5+√3)(√5−√3)
y=(√5)2−2√15+(√3)2(√5)2−(√3)2
y=5−2√15+35−3
y=8−2√162
y=4−√15
[1.5]
Now, x+y+xy
=4+√15+4−√15+(4+√15)(4−√15)
=8+42−(√15)2
=8+16−15
=9
[1]