If x−1x=5, find the value of x3−1x3
⇒(x−1x)2=52
⇒x2+1x2−2(x)(1x)=25
⇒x2+1x2=25+2
⇒x2+1x2=27
Now,
x3−1x3
=(x−1x)[(x)2+(1x)2+(x)(1x)]
=5(27+1)
=140
If x+1x=5, find the value of x3+1x3.