The correct option is B 2
x=2aba+b
=>xa=2ba+b
Applying Componendo and Dividendo,we get,
=>x+ax−a=2b+a+b2b−a−b
=>x+ax−a=3b+ab−a (i)
Again,
x=2aba+b
=>>xb=2aa+b
Applying Componendo and Dividendo,we get
=>x+bx−b=2a+a+b2a−b−a
=>x+bx−b=3a+ba−b (ii)
Now,from (i) and (ii) we get,
=>x+bx−b+x+bx−b=3b+ab−a+3a+ba−b
=3a+ba−b+3b+aa−b
=3a+b−3b−aa−b
=2(a−b)a−b
=2