If x=43 is a root of the polynomial
f(x)=6x3−11x2+kx−20, then find the value of k.
The correct option is B 19
f(x)=6x3−11x2+kx−20
f(43)=6(43)3−11(43)2+k(43)−20=0
⇒6⋅6427−11⋅169+4k3−20=0 ......... (multiplying both side by 9 , we get)
⇒128−176+12k−180=0
⇒12k+128−356=0⇒12k=128⇒k=19