We have, x=√3+√2√3−√2
⇒x=√3+√2√3−√2×√3+√2√3+√2
[Rationalising the denominator]
⇒x=(√3+√2)2(√3)2−(√2)2=3+2++2√3√23−2=5+2√6
Similarly , y=5−2√6
Now, xy=(5+2√6)(5−2√6)=52−(2√6)2
=25−24=1
and, x+y=5+2√6+5−2√6=10
∴(x+y)2=102
⇒x2+y2+2xy=100
⇒x2+y2+2×1=100
⇒x2+y2=98