If xϵN, then range of function f(x)=16−xCx−120−3xCx−5 is
In the function nCr=n!r!(n−r)!,n,r>0&n>r∴f(x)=16−xCx−120−3xCx−5∴16−x<0x−1>020−3x>0x−5>016−x>x−120−3x>x−5
Solving all these inequalities simultaneously we get,
5≤x<7
Sincex∈N∴x∈{5,6}isdomainoff(x)∴RangesetR∈f(5),f(6)f(5)=16−5C5−120−15C0=11C45C0=11C45!0!5!=11C4f(6)=16−6C6−120−3×6C6−5=10C52C1=10C52∴rangeis{11C4,10C52}
Answer B