wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xϵR, then prove that the maximum value of 2(ax)(x+x2+b2) is a2+b2.

Open in App
Solution

y=2(ax)(x+x2+b2)...(A)

Let t=(x+x2+b2)

1t=1(x+x2+b2)=x2+b2xx2+b2x

=x2+b2x(x2+b2)x2

1t=x2+b2xb2

b2+x2+b2tx

from eq (A) & eq (1)

y=(2a+2x)t

yt=2a2(tx2+b2)

yt=2a2t+2x2+b2...(B)

putting the value of x2+b2 from eq (i) into above
b2=t(tx)tx

=t2txtx

b2=t22tx

tb2t=2x Now again replace the value of x from eq (1)
tb2t=2(tx2+b2)

t+b2t=2x2+b2...(ii)

From eq (B) & eq (ii)

yt=2a2t+t+b2t.

y2att2+b2

(a2+b2)(a22at+t2)

(a2+b2)(at)2

when at=0; the equation get if maximum value.

therefore y=2(ax)(x+x2+b2)a2+b2 proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon