If x=asin2θ(1+cos2θ),y=bcos2θ(1-cos2θ), then dy/dx=?
(btanθ)/a
(atanθ)/b
a/(btanθ)
b/atanθ
Step 1: Simplify x=asin2θ(1+cos2θ).
We know that sin2θ=2sinθcosθ
⇒cos2θ=2cos2θ–1⇒x=2asinθcosθ(1+2cos2θ-1)=2asinθcosθ×2cos2θ=4asinθcos3θ
Step 2: Differentiate x w.r.t. θ
dx/dθ=4a(cosθ×cos3θ+sinθ×3cos2θ×-sinθ)=4a(cos4θ–3sin2θcos2θ)=4acos2θ(cos2θ–3sin2θ)
Step 3: Simplify y=bcos2θ(1-cos2θ).
We know that cos2θ=1-2sin2θ
⇒y=b(1-2sin2θ)(1-1+2sin2θ)=b(1-2sin2θ)×2sin2θ=2b(sin2θ–2sin4θ)
Step 4: Differentiate y w.r.t. θ
dy/dθ=2b(2sinθcosθ–2×4sin3θcosθ)=2b(2sinθcosθ–4×2sinθcosθsin2θ)=2b(sin2θ–4×sin2θsin2θ)=2bsin2θ(1–4sin2θ)
Step 5: Find dy/dx.
dy/dx=(dy/dθ)/(dx/dθ)=2bsin2θ(1–4sin2θ)/4acos2θ(cos2θ–3sin2θ)=b×2sinθcosθ(1–4sin2θ)/2acos2θ((1-sin2θ)-3sin2θ)=bsinθcosθ(1–4sin2θ)/acos2θ(1-4sin2θ)=bsinθ/acosθ=(btanθ/a)