wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=asin2θ(1+cos2θ),y=bcos2θ(1-cos2θ), then dy/dx=?


A

(btanθ)/a

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

(atanθ)/b

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

a/(btanθ)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

b/atanθ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

(btanθ)/a


Step 1: Simplify x=asin2θ(1+cos2θ).

We know that sin2θ=2sinθcosθ

cos2θ=2cos2θ1x=2asinθcosθ(1+2cos2θ-1)=2asinθcosθ×2cos2θ=4asinθcos3θ

Step 2: Differentiate x w.r.t. θ

dx/dθ=4a(cosθ×cos3θ+sinθ×3cos2θ×-sinθ)=4a(cos4θ3sin2θcos2θ)=4acos2θ(cos2θ3sin2θ)

Step 3: Simplify y=bcos2θ(1-cos2θ).

We know that cos2θ=1-2sin2θ

y=b(1-2sin2θ)(1-1+2sin2θ)=b(1-2sin2θ)×2sin2θ=2b(sin2θ2sin4θ)

Step 4: Differentiate y w.r.t. θ

dy/dθ=2b(2sinθcosθ2×4sin3θcosθ)=2b(2sinθcosθ4×2sinθcosθsin2θ)=2b(sin2θ4×sin2θsin2θ)=2bsin2θ(14sin2θ)

Step 5: Find dy/dx.

dy/dx=(dy/dθ)/(dx/dθ)=2bsin2θ(14sin2θ)/4acos2θ(cos2θ3sin2θ)=b×2sinθcosθ(14sin2θ)/2acos2θ((1-sin2θ)-3sin2θ)=bsinθcosθ(14sin2θ)/acos2θ(1-4sin2θ)=bsinθ/acosθ=(btanθ/a)


flag
Suggest Corrections
thumbs-up
13
similar_icon
Similar questions
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon