If x=acost+logtant2,y=asint then dydx is equal to.
tant
-tant
cott
-cott
Explanation for the correct answer:
To find the value of dydx :
Given,
x=acost+logtant2,y=asint
Now, Differentiate x and y with respect to t.
dydt=acostx=a(cost+logtant2)dxdt=a-sint+1tant2sec2t212=a-sint+1sint=a(1–sin2t)sint=acos2tsintdydx=dydtdxdt=acostacos2tsint=tant
Hence, the correct option is A.
If x=sint,y=tcost. Then dydx is equal to