wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=etsint,y=etcost, then d2ydx2 at t=π is equal to


A

2eπ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

12eπ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

12eπ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

2eπ

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

2eπ


Explanation for the correct option:

Step 1. Find dxdt and dydt.

Differentiate x=etsint with respect to t.

dxdt=ddtetsint=etsint+etcost=etsint+cost

Differentiate y=etcost with respect to t.

dydt=ddtetcost=etcost+et-sint=etcost-sint

Step 2. Find the value of dydx.

The value of dydx is given as: dydx=dydt×dtdx.

Substitute the found values.

dydx=etcost-sint×1etsint+cost=cost-sintsint+cost

Step 3. Find the value of d2ydx2.

The value of d2ydx2 is given as: d2ydx2=ddtdydxdtdx

Substitute the values.

d2ydx2=ddtcost-sintcost+sint1etsint+cost=-sint-costcost+sint-cost-sint-sint+costcost+sint21etsint+cost=-sin2t-cos2t-2sintcost-cos2t-sin2t+2sintcostetcost+sint3=-1-1etcost+sint3=-2etcost+sint3

Step 4. Find the value of d2ydx2 at t=π.

In d2ydx2=-2etcost+sint3 substitute π for t to get the value of d2ydx2 at t=π.

d2ydx2t=π=-2eπcosπ+sinπ3=-2eπ-1+03cosπ=-1,sinπ=0=-2eπ(-1)=2eπ

Hence, the correct option is (D).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon