The correct options are
A 34
B 33
Given n=101,p=13
⇒q=1−13=23
We will check using options
P(X=34)=101C34(13)34(23)67
⇒P(X=34)=101(67)!(34)!×(13)101267 .....(1)
P(X=33)=101C33(13)33(23)68
⇒P(X=33)=101(68)!(33)!×(13)101268 .....(2)
P(X=32)=101C32(13)32(23)69
⇒P(X=32)=101(69)!(32)!×(13)101269 .....(3)
P(X=35)=101C35(13)35(23)66
⇒P(X=35)=101(66)!(35)!×(13)101266 .....(4)
Now, dividing (1) by (2), we get
P(X=34)P(X=33)=3468×2=1
⇒P(X=34)=P(X=33)
Now, we will divide (1) by (3)
P(X=34)P(X=32)=6964>1
⇒P(X=34)>P(X=32)
Now, we will divide (1) by (4), we get
P(X=34)P(X=35)=7067>1
⇒P(X=34)>P(X=35)
Hence, P(X=34),P(X=33) is maximum.