If X follows a binomial distribution with parameters n=8 and p=12, then P(|X–4|≤2) equals.
A
117128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
118128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
119128
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
6364
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C119128 n=8 p=12
Since |X−4|≤2
i.e. −2≤X−4≤2 ⇒2≤X≤6 P(|X–4|≤2)=P(2≤X≤6) ⇒P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6) P(X=r)=nCrprqn−r P(2≤X≤6)=8C2p2q6+8C3p3q5+8C4p4q4+8C5p5q3+8C6p6q2 =p8[8C2+8C3+8C4+8C5+8C6]Sincep=q =128[28+56+70+56+28] =238256=119128