If x=1√3+1 then the value of x+1x is
The correct option is
option B. None of these
x=1√3+1×√3−1√3−1=√3−12x+1x=√3−12+2(√3−1)=(√3−1)2+42(√3−1)=3+1−2√3+42(√3−1)=8−2√32(√3−1)
So, x+1x=8−2√32√3−2
Hence, The correct option is option B.
If x = 1, then the value of
2+x1+√3+x+2−x2−√2−x=?
2x2+5x+3=?(a) (x+3)(2x+1)(b) (x+1)(2x+3)(c) (2x+5)(x−3)(d) none of these